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ABSTRACT

Recently several second order closure models have been proposed for closing the second

moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient)

tensor and the dissipation rate tensor are the two of the most important terms. In the

literature, these correlation tensors are usually decomposed into a so called rapid term and

a return-to-isotropy term. Models of these terms have been used in global flow calculations

together with other modeled terms. However, their individual behavior in different flows

have not been fully examined because they are un-measurable in the laboratory. Recently,

the development of direct numerical simulation (DNS) of turbulence has given us the

opportunity to do this kind of study. With the direct numerical simulation, we may use

the solution to exactly calculate the values of these correlation terms and then directly

compare them with the values from their modeled formulations (models). In this paper, we

make direct comparisons of five representative rapid models and eight return-to-isotropy

models using the DNS data of forty five homogeneous flows which were done by Rogers et

al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the

performance of these models in different flows and identify the ones which give the best

performance. The paper also describes the modeling procedure, model constraints, and

the various evaluated models. The detailed results of the direct comparisons are discussed,

and a few concluding remarks on turbulence models are given.



1. Introduction

Homogeneous turbulent flows have been used for studying many important phenomena of

turbulence. In these flows, the mean flow field is decoupled from the dynamical equations of

turbulence and, therefore, the detailed turbulence structure and related turbulent transfer

have no influence on the mean flow field. On the other hand, however, the mean flow field

directly affects the evolution of turbulence through the turbulence dynamical equations.

This unique feature of the homogeneous turbulence enables us to selectively and efficiently

study the effect of the mean flow field on the turbulence.

From turbulence modeling point of view, the homogenous turbulence has been also con-

sidered as a base for developing advanced closure models, especially the second order

closure and the spectrum closure (or two-point closure). For the second order closure (or

second moment closure), the homogeneous turbulence greatly simplifies the turbulence

equations by excluding the turbulent diffusion term, and thus enables us to concentrate

on the velocity-pressure gradient correlation tensor and the dissipation rate tensor, which

are two of the most important terms in the Reynolds-stress equations. In addition, the

homogeneous turbulence provides us with some nice symmetry properties for turbulence

correlations which are very helpful in the model development.

In this paper, we describe several representative second order closure models for the ho-

mogeneous turbulence, which are also used or extended to the inhomogeneous turbulence.

Thirteen models[I]-[ a2] are included in this study. To explore the behavior of these models

in a wide range of flows and to identify the ones which represent the state of the art, we have

made direct comparisons of these models with the data of direct numerical simulations.

That is, we use tile solution of the DNS to calculate the exact values of the terms which

need to be modeled and then compare them with the values from the respective model

formulations. This kind of comparison removes the ambiguity and confusion present in a

global indirect comparison, which compares the solutions of the modeled second moment

equations. In this indirect comparison, the models of the other terms in addition to the

model we want to evaluate are also involved. In practice, we often encounter the situations

in which two wrong things (models) compensate each other to make the solution of the

specific flow correct, and therefore, we cannot draw a definite conclusion about the certain

models from this kind of indirect comparisons.

The DNSs used in this paper are homogeneous shear flows (Rogers et al. [13]) and homoge-

neous irrotational strain and relaxation flows (Lee et al.[14]). The DNS data of forty five

different turbulent ttows are used for the direct comparisons of turbulence models.

Section 2 lists the basic equations and model terms, and then briefly describes the model



constraints and the modeling procedure. Section 3 describes various second order closure

models proposed by different researchers. A brief comment on each model is also given.

Section 4 shows the detailed direct comparisons between models and DNS data. Finally,

a few concluding remarks are made in section 5.

2. Turbulence equations and model terms

For incompressible turbulent flows with constant density p, the mean equations can be

written as:

v_,_= 0 (1)
__v
Dt Ui = _l p, i - (u-7_),j + j3iO + uUi,jj (2)

P
D

D--/O= -(0_sl,j + _Ojj (31

where ( ),i represents the spacial derivative, and D # 0D---_= o_ + Uk _-_. • Ui, 0 and P are

the mean of the velocity, the scalar and the pressure, ui, 0 and p are the corresponding

fluctuating quantities, ft_(= g_/p), r, and 3' are the buoyancy vector, the kinematic viscosity

and the thermal diffusivity respectively. To close above equations we need models for the

second order moments: uiuj, Oui, which represent the Reynolds stress and the turbulent

scalar flux (e.g., heat flux). At the second order closure level, these second moments are

provided with a set of modeled transport equations.

The exact equation for the Reynolds-stress tensor uiuj can be written as:

D

-'_Ui?-tj : Dij + Pij 4- Fij -4- Tij + IIij - eij

where,

(4)

F_j = _Ouj + _jOu_

Tij -- [_(-_zuju k + 1= -(_P_k + _k)],k
P

I[ij = _p(ui,j + uj,i)

$ij = 21_Ui,kUj,k

Dij and Tij are the viscous diffusion and the turbulent diffusion; Pij and Fij are the shear

and buoyancy production terms; and finally IIij and ¢ij represent the pressure-strain rate

tensor and the dissipation rate tensor respectively. 6ij is the Kronecker's delta. Obviously,



to close above Reynolds-stress equation, we must model the new unknowns Tij, IIij and

¢ij. At the level of the second order closure, these new unknowns are usually modeled

with algebraic equations in terms of the second moments and the mean quantities (with

the exception of the trace ckk = 2¢, which is modeled with a transport equation).

The exact heat flux Oui equation is:

D m

--_ Oui = Dio + Pio -4- Fio "4-Tio -4- Hio - 6io (5)

where,

Dio = 7(uiO,k),k % u(ui,kO),k

Pio = --OukUi,k -- _O,k

Fio = _iO 2

= +
P

1 0IIie = -p ,i
P

SiO = (V + "[)O,kUi,k

The physical meaning of above terms is similar to the terms in the Reynolds-stress equation.

If 7 = u, Dio can be written as u(0ui)kk. Again, in order to close the heat flux equation,

Ti0, 1-Ii0 and ¢i0 must be modeled and they are usually modeled with algebraic equations

in terms of the second moments and the mean quantities.

B

In general, we also need an equation of the temperature variance 02:

D 0--_- = 7(_-),kk _ 20ukO,k -- (02uk),k -- 270,k0,k
Dt

Again, the last two terms in the above equation must be modeled.

(6)

In a general turbulent shear flow with moderate inhomogeneity, the turbulent diffusion

terms in the second moment equations are usually smaller than the other terms. How-

ever, the pressure-strain rate and dissipation rate tensors are always among the leading

terms. Therefore, the performance of modeled equations largely depends on the models of

pressure-strain rate tensor and dissipation rate tensor.

For the homogeneous turbulence with constant gradients of the mean velocity and the mean

temperature, the equations (1-3) will be decoupled from the equations of second moments

(4), (5) and (6), and hence the mean flow field of the homogeneous turbulence will not be

affected by the turbulence. However, the converse is not ture. The mean flow field (Ui



and O) will directly affect the evolution of turbulence through the terms on the right hand

side of the second moment equations. In addition, the turbulent diffusion terms will not

be present in the homogeneous turbulence, which enables us to isolate the pressure-strain

rate tensor and the dissipation rate tensor from the complicated triple correlation tensor

(turbulent diffusion term).

In this paper, we will only concentrate on the models of the pressure-strain rate tensor and

the dissipation rate tensor for the velocity field. However, for the purpose of describing

the modeling procedure, we will also include the scalar field.

Realizability:

For constructing turbulence models, various model constraints have been proposed by dif-

ferent authors in an attempt to make the model equations as general (or universal) as

possible. Besides the conventional model constraints (e.g. invariance principle), the most

recent ones are the reaiizability principle (Schumann [ls], Lumley [71), the linearity principle

(Pope[l_]), the rapid distortion theory (Reynolds [171), and the material indifference princi-

ple (Speziale [ls]). However, some of the above mentioned principles are not universal. For

example, the material indifference is not valid for general turbulence in which the fluctu-

ating velocities are three dimensional. The principle of linearity is also not universal, as it

holds only for passive scalars. On the other hand, realizability (defined as the requirement

of the non-negativity of turbulence energy components and Schwarz' inequality between

any fluctuating quantities) is the basic physical and mathematical principle that the so-

lutions of any governing equations should obey. Hence, among all the above mentioned

model constraints, realizability is the most universal, important principle and is also the

minimal requirement to prevent the turbulence model equations from producing unphysi-

ca] results. Realizability can be applied to various turbulence quantities, for example, the

Reynolds stresses uiuj, the scalar fluxes Ou---_,and the triple correlations. For one-point sec-

ond moment equations, realizability for iziuj and Oui is most important (for more details,

see Shih et al.[191, Lumley[2a]).

Modeling procedure:

A traditional way to treat pressure-strain rate tensor was first proposed by Chou [2°]. It

starts with the following equation of the fluctuating pressure:

1
---p,jj = 2Ui,juj,i -4- ui,juj,i -/_iO,i - ui,juj,i (7)

P

Based on the linearity of p, this equation can be split into three parts:

1 _(1)

-pp,jj = 2Ui,juj,i
(8)
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1_(2)
p_,jj = uiduj,d (9)

1 _(3)
z,,_ = -fh0,_ (10)

P

Then the pressure related correlation terms in the second moment equations can be written

as:

II,j=IIi )+ nT (11)

n(1) "(2) r[(a) (12)Hie =--io + "'io +--io

where, the first term on the right which is explicitly related to the mean velocity gradient

is called the rapid term, the second term which is related only to the pure fluctuating

quantities is commonly called slow term, and the third term which is directly related

to the buoyancy is called buoyancy term. In the literature, the slow term r_ ) is often

combined with the deviatoric part of the dissipation rate tensor (the dissipation is also

related only to the pure fluctuating quantities). They both drive the turbulence towards

isotropic state. Therefore Lumley [r] defined ¢ij and _io:

which are called the return-to-isotropy terms in the second moment equations. Here q2 =

UkUk, _ = _ kk.

For the rapid and buoyancy terms, one may obtain their exact expressions for homogeneous

turbulence using the solution of Eq.(8) and Eq.(10):

1/IIl_)=-2Up,q-4--_ [(Uq(T)Ui(rt)),pj 71- (Uq(r)uj(rt)),pi]
Ir --Ttl

V

----2Up,q(Xpjqi -{-Xpiqj) (15)

dv._on(')= -2uj,k [uk(T)O(_")],,_I_"_r'l
V

= 2Uj,kXi.ik (16)

If dvnl_)= Zk [(o(_)u,(r,)),_j+ (0(r)w(_,)),kdi - ,I
V

= --Zk(Ykj_+ Yk_j) (17)
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dv
V

= --/3kY/k (18)

where the tensors X and Y are the integrals of two-point correlations over the entire

physical space. To model the rapid and buoyancy terms is now to model these tensors.

We notice that the exact expressions of X and Y in Eqs.(15-18) do not provide the models

in terms of the second moments. However, they do give us a hint to model them, because

these integrals tell us some important properties of X and Y:

Xijk = X_ik

Ykji = Yjki

Y/k = Yki (19)

Xvjvi = O, Xikk = O

Yk j = o (20)

Xppqi = UqUi, Xiik = OUk

Ykki = 0ui, Ykk = 02 (21)

Eq.(19) is the symmetry condition, Eq.(20) is the incompressibility condition, and Eq.(21)

is called the normalization condition (Rotta[S]). Theses equations are very helpful for

constructing models of X and Y. In fact, they have been used in all conventional turbulence

models. A model which does not satisfy the above conditions has little hope of success in

general applications.

In this paper, we only present the models for the velocity field which will be directly

compared with the available DNS data. These models are for the rapid term IIl_ ) and the

return-to-isotropy term -_q)ij (denoted as II_)).

3. Closure models:

In this section, we will describe five models for the rapid term and eight models for the

return-to-isotropy term. These models were proposed by different researchers and have

been indirectly tested in different selected flows.
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(1)
3.1 Models for the rapid term IIij :

Launder, Reece and Rodi (LRR):[ 1]

)_ 9c2 +  isbk S  )-- 0.2Sij + 6_bikSjk + bjkSik -
2q2 22 (22)

10 2:C2+ (bik_jk + bjk_ik)

where C2 = 0.4, and

uiuj 1,5
bij -- _ -- _ ij,

1 (Ui,j + Uj,i),

1 (Ui,j - Uj,i)

This model is linear in the Reynolds-stress. It contains only one model constant C2. This

model satisfies the conventional model constraints Eqs.(19-21). It is the most general form

at the level of linear dependence on the Reynolds-stress. However, as Lumley[ 7] pointed out

that this model may violate realizability as turbulence approaches two component state.

Speziale, Sarkar and Gatski (SSG): [2]

(1) **
IIij 0.2 - C3 C_ P

Sij bij
2q2 4 2q2

C4 2

(bikSjk + bjkSik - 3_fijb_tSkz)+T

C5 (bik_jk + bjk_ik )+-T

(23)

where,

C_* = C_bijbij, P = -u--i_Ui,j

C_'-1.8 C_=1.3, C4=1.25, C5=0.4

This model is quasi-linear in the Reynolds-stress, because the coefficients in the first two

terms are not constant, they depend on the invariant of the Reynolds-stress tensor and the

production P. This model contains four model constants (C_, C_, C4, C_), therefore one

may imagine that it will be difficult to correctly calibrate them. In addition, this model

does not satisfy the basic model constraint Eq.(21). If we impose this constraint, then the

four coefficients will reduce to only one, and this model will reduce to the LRR model.

Finally, like the LRR model, the SSG model may also violate realizability.



Fu_ Launder and Tselepidakis (FLT): [3]

2q 2

2 b
- 0.2Sij 4- 0.3(bikSj/e 4- bjkSik - -_Sij kzSkz)

4- _(biic_jk + bjkf_ik)

2
+ 0.2(b_tSj_ + bjlSi_ - 2bkjbliSkt - 3bijbklSkl)

+ 0.2(b ,ajt + b :ni )
+ r[4b_,,(bik_jk + bjk_ik)

4- 12b,.=ib,.,j(bmk_nk 4- b,_k_,,_k)]

(24)

where r = 0.7, bi_ = b_kbkj.

This model is cubic in the Reynolds-stress. The final selected form contains one model

constant. This model only satisfies a part of realizability condition, that is the two com-

ponent state of turbulence. However, when scalar field is involved, this model wiU not

be able to satisfy the Schwarz' inequality between velocity and temperature. This part of

realizability is sometimes called the joint realizability.

Shih and Lumley (SL):[ 41

2q 2
26ijbktSkz)-- - 0.2,-.qij 4- 3as(bikSjk 4- bjkSit¢ - -_

4- _(2 - 7as)(blkI2jk 4- bjkf_i_)

2
4- 0.2(b_Sjz 4- bjlSil - 2bkjbliSkl -- 3bijbktSkl)

2
+ 0.2(b_tf_jz + bjl_il)

(25)

where,

1 (1 + 0.8F1/2),
O_5_---" _

9
F = 1 + 9bijbjkbki - -bijbij

2

This model is quasi-quadratic in the Reynolds-stress, because the model coefficient as is

the function of the invariants of Reynolds-stress tensor. We emphasize that this model

is obtained from a more general form of the expression than the FLT, and satisfies both

the two component condition and the Schwarz' inequality between the velocity and scalar

fields. In addition, the final form is simpler than the model of FLT.

9



Shih and Mansour (SM):[ s]

2 6ijbktSkl)
-- - 0.2Sij + 3as(bikSjk + bjkSik - -_2q 2

1 (2 - 7as)(bik_jk + bjkQik)

2
+ 0.2(b_tSjt + bjzSit - 2bkjbuSkt - 3biibklSkt)

+ +

where, as = _{1 + 3.511 - (1 - F)I/'])}.

(26)

This model has the same form as the SL model. It was derived in a different way and

contains a different model coefficient as which was calibrated from one of the DNS data

(Rogers[13]). This model, like the SL model, fully satisfies realizability conditions.

(2)
3.2 Models for the return-to-isotropy term IIij :

Rotta:[ s]

where, C = 3.0.

nT = - cb,j (27)

This model is linear in the Reynolds stress, and contains one model constant. It was

widely used and adopted in the LRR model. We notice that this model will not allow the

turbulence to reach the state of two component, because when any turbulent component

reduces to q2/9, the model Eq.(27) will force it to grow.

Lumley:[ r]

II(i_ )= -¢[/_bij + 7(b_j + 2II_f_j/3)1 (28)

where, 3' = 0 and

F

= 2 + _ exp(-7.77/v/-R-ee){V2/v/-R-_e + 80.1 ln[1 + 62.4(-II + 2.3III)]}

Re- q-52
9¢v

This model is quasi-linear in the Reynolds stress, because 3' is set to zero, and fl is a

function of the invariants of Reynolds stress tensor. This model is simple, and satisfies

realizability.

Sarkar and Speziale (SS):[ s]

IIl_) = -e[Clbij - 3(C1- 2)(b2j - lb_kSij) ]
,.)

(29)

10



where Ca = 3.4.

This is a quadratic model in the Reynolds-stress tensor. It satisfies what they call the weak

realizability condition. Like the Rotta model Eq.(27), this model will not produce unphys-

ical results. However, it will not allow the turbulence to approach the two component

state, which could occur in some situations, for example, in the near-wall turbulence.

Haworth and Pope (HP): [9]

II_ ) = -e{Clbij - C2[_bij + bi_ - b_k(bij -4-gij/3)]}

where C1 = 8.3, C2 = 14.8.

(30)

Eq.(30) is the slow part of the Haworth and Pope's model for the situations with no mean

velocity gradient. This model, like the SS model, will not produce unphysical results,

however, it will also not allow the turbulence to approach the two component state.

Choi and Lumley (CL): [1°1

If III >_ O,

where,

1-[_) = -e[flbij "4-v(b_j + 2II_ij/3)] (31.1)

p*Fi/2
fl=2+

I+Gx 2

p*F I/2 G

"7- I +Gx 2

= (IXI/2) a/3, 71 = (-II/3) '/2

G -X 4 + 0.8X 6
X _ --,

77

P* = exp[_9.29/Rel/_]{( 7.69
Re1�2

Re- q---i2 II =-bijbij/2,
9ev'

73.7

-- + --R-_-e) -[296- 16.2(X + 1)4]II}

III = bijbjkbki/3

If III < 0,

1-II_) = Eq.(28) (31.2)

The model coefficients in Eq.(31.1) were obtained using their comprehensive measurements

of turbulence relaxing from axisymmetric expansion. Both Eq.(30.1) and Eq.(31.2) satisfy

realizability, however, Eq.(31.1) is vafid only for III > 0, because _ is not defined when

III < O.

11



Craft and Launder (C&L):[ n]

t 2
II_ ) = -Cl_[2bij + 4Ca(bij - b_k,Sij/3)]- 2ebij

where,

C1 = 3.1(A_A) 1/_, C_ = 1.2

9 (As - A3)
As = 4 bijbji, A3 = 8 bijbjkbki, A = 1 - -g

This model is tensorially quadratic in the Reynolds stress, and satisfies realizability.

Yamamoto and Arakawa (YA):[ TM

II_ ) = -e[aabij + oL2(bi_ - b_k6ij/3)]

where,

al = 2 + p F [q (b_k)" + [bak_lSsign(bakk)]

a2 =3(al--2)

p=--12, q=--0.65, r=0.4, s=0.45

9_
F =1- +9bL

2

(32)

(33)

The YA model tried to fit the situations with both positive and negative b_k. It also meets

the requirement of realizability.

Shih and Mansour (S&M):[ s]

= -e{(2.0 + CfF_)bij + 7[b_j + (1/3 + 2II)bij + _II,Sij]}IIl_. )

where,

(34)

CI = (1/9) exp(-7.77/x/_e){72/v_e + 80.1 ln[1 + 62.4(-II + 2.3III)]}

7 = 70(1 - F'7), Re q--_
9eu

F = 1 + 9II + 3III

II = -l bijbij, III= l bijbjkbki
2 3

=17/20, y=1/20, 7o=-2

This model matches the data of Comte-Bellot and Corrsin[ 21] and meets the requirement

that there will be no return to isotropy in the zero Reynolds number limit. This model

also satisfies realizability.

12



4. Direct comparison between models and DNS data

The direct numerical simulations of the homogeneous turbulence used for the direct com-

parisons in this paper were done by Rogers et all13] and Lee et al[14]. The Rogers et

al.'s flows are homogeneous shear flows with different shear rate S and different turbu-

lent Reynolds number --_2/(ve). Four of them are marked as C128U, C128V, C128W

and C128X. They are used for direct comparisons with both rapid and return-to-isotropy

models. The Lee et al.'s flows are irrotational strain flows and relaxation flows from var-

ious irrotational strains. The irrotational strain flows include axisymmetric contractions

(AXK-AXM), axisymmetric expansions (EXO-EXQ) and plane strains (PXA-PXE: the

cases of suppression in "22" direction, expansion in "33" direction and no strain in "11"

direction). Eleven of them are used for our direct comparisons with rapid models. The re-

laxation flows are from axisymmetric contractions (K3R-M5R), axisymmetric expansions

(O3R-QfR) and plane strains (A2R-H4R). Thirty of them are used for direct comparisons

with return-to-isotropy models.

Figures 1-4 show the direct comparisons of five rapid models with the Rogers et al.'s DNS

data (C128U, C128V, C128W and C128X). The two tensorially linear models (LRR [11 and

SSG[2]) deviate from the DNS data significantly for the H_11) and H_12) components for all the

four cases. However they perform reasonably well for the II_ ) and H_12) components except

for the case of C128V in which the models are off for the H_ ) component. For most thin

shear layer flows, the component _ is more important than others. Therefore we may

expect that the LRR and SSG models would predict thin shear layer flows reasonably well.

However for flows where all components are important, the above linear models would not

perform well. We also notice that the SSG model is a quasi-linear model with four model

coefficients, but according to all test cases, it seems that the SSG model does not show

any better performance than the LRR model. Apparently, either the model coefficients

in the SSG model are not chosen properly or the deficiency due to the inconsistency with

Eq.(21) shows up in these comparisons. On the other hand, three tensorially nonhnear

models (FLT [31, SL [41 and SM [s]) perform much better than the linear models, expecially

the SL and SM models, they compare very well with the Rogers et al.'s DNS data for all

the cases and all the components.

Figures 5-8 compare seven return-to-isotropy models with the Rogers et al.'s DNS data.

Two of them (Rotta [61 and Lumley [7]) are tensorially linear in the Reynolds stress, others

are nonlinear. We notice that all the return-to-isotropy models can be written in a basic

form of Eq.(28) which was proposed by Lumley. In fact, Eq.(28) is the most general form

provided that H_ ) is an isotropic function of bij and Re, where _ and 3' are functions

of II, III and Re. Therefore, all the return-to-isotropy models are just the variations of

Eq.(28), depending on the choice of model coefficients 13 and 7. It is evident from these

13



direct comparisons that the linear Rotta[ a] model does not perform very well except for

the component --a3r[(2),in which the Rotta[ _] model does very well. However this component

is not very important for most shear flows. The SS model Is] and the YA model[ 12] are

nonlinear models; they behave very much llke the Rotta model except in the component

H_ ). On the overall, the SS and YA models perform worse than the Rotta model. The

C&L model[ 11] is also a nonlinear model, it behaves better than the Rotta model for all

the cases except in the component II_2a) in which the C&L model is the worst one among

all the models. Apparently, the model coefficients in the above mentioned models are not

appropriate according to the Rogers et al.'s shear flows. However, surprisingly enough,

the Lumley's quasi-linear model[ 7] performs very well for all the cases. It was well known

that the Lumley's model works excellent for the flows in which III < O, but it would

not work very well for the cases [1°] with III > 0. Here in the Rogers et al.'s flows,

Ill > 0, and it still works quite well. We think this is partly due to the low Reynolds

number behavior of the Lumley's model and the Rogers et al.'s DNSs are the low Reynolds

number flows. The CL model[ 1°] is particularly designed for the cases with III > 0 based

on their experiments of flows relaxing from the axisymmetric expansion. It also works

reasonably well in all the Rogers et al.'s flows. Finally, the SaM model Is], which is derived

from Eq.(28) using realizability and matches the behavior of the low Reynolds number

turbulence (final period of decay), performs very much like the Lumley's linear model with

just a little improvement over it.

From these direct comparisons, it is clear that the SL [4] and SM[ s] nonlinear models perform

the best among the five rapid models. For the return-to-isotropy models it is also clear

that the Lumley's linear model[7], the S&M[ s] model and the CL[ a°] model are the best

among the seven models tested here.

The Lee et al.'s flows are also homogeneous but their characteristics are very different from

the Rogers et al.'s homogeneous shear flows. Even though these flows do not often occur

in the nature, it is still interesting to see how do the models of rapid and return-to-isotropy

terms perform in these critical numerical simulations. We will first look at the comparisons

of the rapid models and then the return-to-isotropy models.

Figures 9-11 compare the rapid models with the three axisymmetric contraction flows.

These figures show that no rapid models, except the SL[ 4] and SM Is], can predict the

simulation data well. The SSG and LRR models, which are tensorially linear, perform

the worst. The SSG is even worse than the LRR. The nonlinear model FLT is much

better than the SSG and the LRR, but still significantly deviates from the DNS data,

especially in the case AXM, which has high shear rates (S = 38.2 - 96.5). We notice that

in the axisymmetric contraction flows, only the SL and SM rapid models show very good

performance for all the cases and all the components. Figures 12-14 compare the same
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rapid models with the three axisymmetric expansion flows. This time, no rapid models

can follow the DNS data well. However, the SM model performs a little better than others,

and the SSG model is the worst, especially when the shear rate becomes larger. Figures

15-19 compare the rapid models with the five plane strain flows. The linear LRR model

does a good job for the H_ ) component, but bad job for the H_ ) component. The SSG

model performs worse than the LRR model. The nonlinear models (FLT, SL and SM) do

good job for the II_la ) component, but for the II_ ) components, they are even worse than

the linear models.

Now let us look at the direct comparisons of eight return-to-isotropy models with the Lee

et al.'s relaxation flows. Figures 20-25 compare the models with the six flows relaxing

from axisymmetric contractions (K3R-M5R). In these flows, III < 0, the Lumley's model

works excellent for all the cases and all the components (the CL model in this case is the

Lumley's model). The nonlinear model of S&M works as good as the Lumley's model. All

other models deviate from the DNS data significantly, especially when the flows relaxing

from higher strain rates (e.g. M5R). It is also interesting to note that the simple Rotta

model works better than the nonlinear models of SS, YA, C&L and tIP [9]. The HP model

performs worst among all the models. Figures 26-27 compare the models with the two flows

relaxing from axisymmetric expansions (O3R, O6R), for which III > O. Figures show that

the nonlinear models of S_zM Is] and CL have better behavior than the other models. This

time, the model of C_L performs the worst. Finally, Figures 28-49 compare the models

with the twenty two relaxation flows from plane strains (A2R-H4R). In these flows, the

Lumley's linear model and nonlinear models of S&M and CL predict the H_23) component

very well for all the cases. For "'2213"(2)' they are also the best among others. However, this

time, the SS [sl and HP[ 91 models appear to be the best in the II_ ) component, and the

YA and C&L models are the worst among others.

From the above critical comparisons with the Lee et al.'s irrotational strain flows, we see

that the rapid models of SL[ 41 and SM Is] work very well in all the axisymmetric contraction

flows. In the axisymmetric expansion flows and plane strain flows they do not work very

well. However, on the overall they still perform better than others. The comparisons of

return-to-isotropy models with relaxation flows show that the Lumley's linear model[ 7] is

perfect for all the cases with III < 0, so is the model of S&M [s]. For the relaxation flows

from the axisymmetric expansions and plane strains, the S&M [51 and CL [1°] models show

better performance.

5. Concluding remarks

We have made the direct comparisons of five rapid models and eight return-to-isotropy

models with the direct numerical simulations of Rogers et al. [13] and Lee et al.[141 Forty
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five DNS flows are usedfor the direct comparisons.We notice that the Reynolds number
in all these simulations is low, and therefore, they may not represent the real turbulence

in the nature. However, the model terms concerned here are mainly pressure related

correlations. Eq.(7) indicates that the fluctuating pressure is not directly related to the

viscosity, hence the pressure related correlation terms may not be directly affected by the

Reynolds number, especially the rapid term. The return-to-isotropy term which includes

the deviatoric part of dissipation rate tensor may have some dependence on the Reynolds

number. According to the above consideration, we think that the direct comparisons with

the low-Reynolds DNS data are legitimate, although we should keep in mind the possible

low-Reynolds number effect of the DNS data.

We have directly compared five rapid models with fifteen DNS flows: four of the Rogers

et al.'s shear flows, eleven of the Lee et al.'s irrotational strain flows (axisymmetric con-

traction, ax_isymmetric expansion and plane strain). Comparing the performance of the

LRR and SSG models, which are tensorially linear in the Reynolds stress, we conclude

that the SSG model gives very little improvement over the LRR model. In fact in many

cases, it is worse than the LRR model. The reason is not very clear. However, we notice

that the SSG model does not satisfy the normalization condition of Eq.(7) which may be a

cause for its poor behavior. If we impose the constraint of Eq.(7) on the SSG model, then

it will exactly reduce to the LRR model. In fact it can be shown that the most general

form of the rapid model, which is tensorially linear in the Reynolds stress, is the LRR

model. Therefore, in general, the treatment used in the SSG model would hardly give any

improvement over the LRR model. A natural way to improve the model is to use a more

general nonlinear form and more general model constraints. A typical example is the SL[ 4]

model. It starts with the most general form, using full realizability constraints together

with the other conventional constraints given by Eq.(5)-Eq.(7). The result is a well be-

haved model. Indeed, from the direct comparisons with the DNS data, the SL[ 41 model and

its variation form of SM Is] model give the best performance in most of the cases. As to the

FLT[ 3] model, it is also a nonlinear model. It starts with a tensorially cubic dependance

on the Reynolds stress with constant coefficients (in general, these coefficients should not

be restricted to constants). In addition, the two component conditions of turbulence have

been imposed. However, the FLT model ignores the Schwarz' inequality. Its final form

contains two undetermined model constants, but one of them is set to zero. The perfor-

mance of the FLT model, from the direct comparisons with the DNS data, is on the overall

better than the linear models, but does not compare with the performance of the SL and

SM models. So from these direct comparisons of the rapid models, we conclude that the

SL [41 model and its variation form SM[ 5] are clearly the best. Having said this we notice

that, as Reynolds[ 221 pointed out, any of the above rapid models will not show any effect

of the rotation on the invariants (II, III) of the anisotropy tensor bij. This is clearly a

theoretical deficiency of the current rapid models. A further investigation is needed to find
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that how serious this deficiency will be in the practice.

We have directly compared eight return-to-isotropy models with thirty four DNS flows:

four shear flows and thirty relaxation flows from axlsymmetric contraction, axisymmetric

expansion and plane strain. As was discussed earlier, all the return-to-isotropy models are

the variation of Eq.(28) derived by Lumley [71. Therefore the differences in the models are

due to the different choices of the model coefficients. Two linear models are the Rotta [_]

and Lumley [7] (which is quasi-linear in hi j). The Lumley's model satisfies realizability,

matches the data of Comte-Bellot and Corrsin [21] and the limit of the final period of

decaying turbulence. It performs perfectly when III< 0. It also compares well with the

DNS data in which III >_ O. The Rotta's model does not compare with the performance

of the Lumley's model. In fact, the nonlinear models of SS, YA, HP and C&L also do not

compare with the performance of the Lumley's model. Apparently the model coefficients

chosen in these models are not appropriate. The CL [l°] model is designed for the flows with

III> 0 and is based on their experiments of the relaxing turbulence. It does work better

than the Lumley's model when III >_ O. Finally, the S&M Is] model is a nonlinear model, it

works just like the Lumley's model when III< 0. When III > O, it shows an improvement

over the Lumley's model according to the DNS data. So from these direct comparisons of

the return-to-isotropy models, we conclude that the combination of the Lumley's model

and the Choi's model, that is the CL [1°] model, will give the best performance. The SgzM Is]

model seems as good as the CL model according to these comparisons. Having said this, we

notice that the existing return-to-isotropy models do not follow the relaxation flows from

expansion and plane strain very well. Therefore there is still a need to further investigate

and improve the return-to-isotropy models.
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Figure 16. Direct comparison of the rapid models with the DNS data of the plane

strain PXB (Lee et al.[ 14]).
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Figure 43. Direct comparison of the return-to-isotropy models with the DNS data

of the relaxation from the plane strain F2R (Lee et al. [14]).
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Figure 44. Direct comparison of the return-to-isotropy models with the DNS data

of the relaxation from the plane strain F3R (Lee et al.h4]).
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of the relaxation from the plane strain G1R (Lee et al.[ a4]).

58



.J
et

0.0020

0.0010

0.0000

-0.0010

,__._ /

-- -- mnln

i D

D
_ f

/

/
/

/

t

n

0._

-0.002

-0.004

-0.006

' ' ' ' d ,g ' _u

r'i __.

,, oG:o/ / ....

#

/ i!t_°

I , I , I , --0.008 , I , 1 I I ,

4.0 5.0 6.0 7.0 5.0 4.0 5.0 6.0 7.0

T T

I¢)

.3
a.

0.0060

0.0040

0.0020

0.0000

3.0

Figure 47.

_ _ .__ls o°t°
, - _,.,,_

- _-._-_.._._.:

, I i I , I ,

4.0 5.0 6.0 7.0

T

Direct comparison of the return-to-isotropy models with the DN$ data

of the relaxation from the plane strain H2R (Lee et al.[ 14]).

59



O.OO2O

--O.O010

• , . , =- ...L__--d.l_mt,w_..._ ji 0"0001. ' , , , =' _. ' .
- - " Shlh it iloneour . . • :_

", - - - I.umley d E

I-

• - - • Sarkor_=l. I I "

_ _ - - - Chd • _ -I --0.002-_ - - - Xnorth_P_p. I

"_ --_-- Yammo_o..-- p_/

_----_--_ _ -" _- _ 4.oo4-/ /
a. DNS ('Ro_ et oL)- _-..... . • / - - - shlh & klarmour

& Sp,z_ole
.... Craft.et aL

. _ -0.006 0 Ct_ & l.um_ley
/ / _ - - Haworth & Pope- Yamamoto & _raka_

/

, . I , I , I , -0.008 i I , I L I ,
5.0 6.0 7.0 8.0 4.0 5.0 6.0 7.0 8.0

T T

0.0060

O.O04O

0.0030

0,0(120

0.0010

' I ' I ' I '

_\ • ,...,--ONS(Room,at oL)\ - - - Shih& llarwour

"\ _ \,\ \ Rotto_\\_ _ - - Craft et eL
Chol *, L__m_ "

• I-k]worth_ P6pe
. , Yamamoto & Aroka_

0.0000 i I i I i I *
4.0 6,0 (S.O 7.0 8.0

Figure 48. Direct comparison of the return-to-isotropy models with the DNS data

of the relaxation from the plane strain H3R (Lee et al.[ 14]).

60



.J
Q.

0.0030

0.0020

0.0010

0.0000

-0.0010

I I -- - I__ _ _I_I_!i dota i

_m,_1

22-?-........____

o o

/

0._

-0.002

-0.006

' 1 ' I ' ElI
El ° ___ - -/

a - _4

. - _f.f-_ 1- I J

/

/ El_s d°t,,
,/ _;mley

/ -_2__. iI_aJ ....

.....

-0.0020 , I , I = -0.008 , I , 1 ,
5.0 6.0 7.0 8.0 5.0 6.0 7.0

T T

8.0

0.0060

0.0050

0.0040

0.0030

0.0020

0.0010

' I ' I '

.__l]sdot.

\, X

\ "\ _f
\ \

\ .

__-- _ _-_

0.0000 , I , I L

5.0 6.0 7.0 8.0

T

Figure 49. Direct comparison of the return-to-isotropy models with the DNS data

of the relaxation from the plane strain tt4R (Lee et al. [14]).

61





FormApproved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden lot this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Olreclorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORTDATE
November 1991

4. TITLE AND SUBTITLE

A Critical Comparison of Second Order Closures With Direct
Numerical Simulation of Homogeneous Turbulence

6. AUTHOR(S)

Tsan-Hsing Shih and John L. Lumley

7. PERFORMING ORGANIZATION NAME(s) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAMES(S)AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

3. REPORT TYPE AriD DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

WU-505-62-21

8. PERFORMING ORGANIZATION

REPORTNUMBER

E-6725

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-105351

ICOMP-91-25;
CMOTT-91-10

11. SUPPLEMENTARY NOTES

Tsan-Hsing Shih, Institute for Computational Mechanics in Propulsion and Center for Modeling of Turbulence and

Transition, Lewis Research Center (work funded under Space Act Agreement C-99066-G). John L. Lumley, Cornell
University, Ithaca, New York 14853. Space Act Monitor, Louis A. Povinelli, (216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200 words)

Recently several second order closure models have been proposed for closing the second moment equations, in which

the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are the two of the

most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term
and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other
modeled terms. However, their individual behavior in different flows have not been fully examined because they are

un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has
given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to

exactly calculate the values of these correlation terms and then directly compare them with the values from their

modeled formulations (models). In this paper, we make direct comparisons of five representative rapid models and
eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et
al. (1986) and Lee etal. (1985). The purpose of these direct comparisons is to explore the performance of these

models in different flows and identify the ones which give the best performance. The paper also describes the

modeling procedure, model constraints, and the various evaluated models. The detailed results of the direct compari-
sons are discussed, and a few concluding remarks on turbulence models are given.

14. SUBJECTTERMS

Turbulence modeling

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

lg. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBEROFPAGES
62

16. PRICE CODE

A04

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102







National Aeronautics and

Space Administration

Lewis Research Center

ICOMP (M.S. 5-3)

Cleveland, Ohio 44135

Official Business

Penalty for Private Use $300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

IIIII!

Poslage and Fees Pa_d

Nal,onal Ae'onautqcs arid

SPace Adr'nln%Trat,on

NASA 451


